DOI: http://dx.doi.org/10.18782/2320-7051.5289

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5 (6):** 158-165 (2017)

Research Article

Salinity Effects on Leaf on Roselle Landraces (Hibiscus sabdariffa L.)

Rathnam Kadamanda^{1*} and Siva Rajan Natarajan²

¹Professor Jayashankar Telangana State Agricucltural University, Research Scholar, Environmental science and Technology Rajendranagar, 500030 Hyderabad, Telangana

²National Bureau of Plant Genetic Resources, Senior Scientist, Economic Botany, Rajendranagar 500030

Hyderabad, Telangana

*Corresponding Author E-mail: rathnamk123@gmail.com Received: 23.07.2017 | Revised: 30.08.2017 | Accepted: 5.09.2017

ABSTRACT

Roselle (Hibiscus sabdariffa L.) is an important leafy vegetable in the country and used for medicinal and industrial purposes. Knowledge on physiological basis of salt tolerance in Hibiscus sabdariffa plant species is an essential pre-requisite not only for success of efforts aimed at selecting salt tolerant landraces, but also for perpetuation of their biodiversity as well as their sustainability. Effect of salinity stress using different concentrations (0.15%, 0.30% and 0.45%) of various salts (NaCl, Na2SO4, Na2CO3, NaCl+ Na2SO4, NaCl+ Na2CO3, NaCl+ Na2CO3, NaCl+ Na2SO4+ Na2CO3) was studied in three landraces (R.K.S.I, R.K.S.II and R.K.S.III) of Roselle (Hibiscus sabdariffa L.) at 30 and 90 days after sowing. Salinity stress effects on leaf area, stomatal index, stomatal frequency of the landraces were studied. Based on the present study, the roselle landrace R.K.S.I (Hibiscus sabdariffa L.) was found to be more salt tolerant than the other two landraces (R.K.S.II and R.K.S.III).

Key words: Salinity, Rosell, Leafarea, Stomatalindex, Stomatal frequency

INTRODUCTION

Soil salinity is a major constraint to food production because it limits crop yield and restricts use of land previously uncultivated. During their growth crop plants usually exposed to different environmental stresses which limits their growth and productivity. Among these, salinity is the most severe ones⁹. Salinity becomes a concern when an "excessive" amount or concentration of soluble salts occurs in the soil, either naturally or as a result of mismanaged irrigation water. The major inhibitory effect of salinity on plant growth and development has been attributed to osmotic inhibition of water availability as well as the toxic effect of salt ions responsible for salinization. Nutritional imbalance caused by such ions leads to reduction in photosynthetic efficiency and other physiological disorders⁸.

Cite this article: Kadamanda, R. and Natarajan, S.R., Salinity Effects on Leaf on Roselle Landraces (*Hibiscus sabdariffa* L.), *Int. J. Pure App. Biosci.* **5(6):** 158-165 (2017). doi: http://dx.doi.org/10.18782/2320-7051.5289

Soil salinity and alkalinity seriously affect about 932 million hectares of land globally, reducing productivity in about 100 million hectares in Asia¹³. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt) of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m-1 in saturated soil extracts) and vegetable salt tolerance decreases when saline water is used for irrigation¹⁴. The United Nations Environment Programme estimates that approximately 20% of agricultural land and 50% of cropland in the world is salt stressed⁷. More land is becoming salinized through failure of rainy seasons, erratic rain fall patterns, under-ground water irrigation sources (Bores) of irrigation water, seepage from contiguous farmers' fields or areas, surface runoff from elevated areas to low lying areas, poor quality irrigation sources resulting in the increase of salt's accumulation within the 30 cm top profile of the soil zone and thus hampering the crop growth and development, causing physiological drought and affecting sustainability of crop plants. Through poor local irrigation practices and natural phenomena such as periodic coastal flooding. These constraints are most acute in areas of the world where food distribution is problematic because of insufficient infrastructure or political instability. Natural boundaries imposed by soil salinity also limit the caloric and the nutritional potential of agricultural production. Water and soil management agricultural practices have improved production on marginally saline soils but additional gain by these approaches seems to be with commercial cultivars. Therefore, the identification and selection of salt tolerant plants is of critical importance.Roselle plant (Hibiscus sabdariffa L.) is one of the most important and popular medicinal and industrial plants¹. The plant has been reported to have antihypertensive, hepatoprotective, antihyperlipidemic, anticancer and antioxidant properties. Nowadays, a great interest exists in the crop of Roselle due to the high

antioxidant properties of the flowers calyxes, which have been extensively evaluated^{11,20,21,22}. Seyed *et al.*¹⁸, demonstrated that the leaf area, leaf number, radicle and plumule length were reduced in the vegetative growth with increasing salinity level and the most negative effect related to Na₂SO₄. The effect of germination treatment on percentage, germination speed, seedling normal and abnormal percentage, vigour index are significantly different.

Grapes landraces (Salti, Zani, Red Glob, Darawishi and SoriBaladi) biomass (root and shoot), physiological parameters (relative water content and total chlorophyll content) and leaves mineral content were significantly (p<0.01) reduced in response to salt stress¹⁶ .The exposure to NaCl at seedlings stages of Pistacia atlantica desf. versus Pistacia vera L, affects the majority of the studied parameters. Morphological parameters, such as height of shoot, number of green leaves, leaf area and consequently, phytomass allocation were significantly decreased⁴.

Experimental site

A pot culture experiment was conducted at the greenhouse of the NBPGR, Rajendranagar, Hyderabad, Telangana, India.

Experimental design

The experiment was laid out in completely randomized block design (CRD) with two replications. Germplasm (seeds) was soaked for 12 h in an appropriate salt solution before sowing. Pots (6" diameter) with sterilized soil (500 g) were taken for the study. Two to three seeds were sown in each pot. Thinning was done after emergence of plants and 1 plant per pot was finally maintained. The first watering was (at the time of emergence) with normal water, remaining all with salt solutions only. 60mL/pot of salt solution was given in the 1st month, 90mL/pot during crop period and 60mL/pot at the time of preharvest stages, at every alternate days.

The present study had been planned to assess the variation in salt tolerance levels among the landraces of *Hibiscus sabdariffa* germplasm.Purified water was used as control. Salt solutions of NaCl, Na₂SO₄, Na₂CO₃,

ISSN: 2320 - 7051

Kadamanda and Natarajan

NaCl+Na₂SO₄, NaCl+Na₂CO₃, Na₂SO₄+Na₂CO₃ and NaCl+Na₂SO₄+Na₂CO₃ were prepared with 0.15%, 0.30% and 0.45% concentrations by 1.5g/L, 3g/L and 4.5 g/L respectively.

Salinity stress effects

Leaf area

Salinity is one of the major abiotic stresses affecting plant productivity. Salinity decreases plant leaf area and finally decreases crop yield².

The salt stress effect on growth parameters and anatomical changes of soybean grown under controlled conditions (pots filled up with perlite and vermiculite) have been described by⁵. He further demonstrated that salinity stress significantly decreased plant height and leaf numbers and interestingly not the leaf area when adding NaCl into nutrition solution with final concentration of 0, 25, 50 and 100 mM.

Results of the experiments conducted by Rahimi Asghar *et al.*¹², indicated that relative growth rates (RGR), crop growth rate (CGR) and leaf area ratio (LAR) were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity.

Stomatal index

The quantitative traits in *Sporobolus ioclados*, viz., increased stomatal density and decreased stomatal area are critical for stomatal regulation under salt-prone environments. High stomatal regulation depended largely on stomatal density, area, and degree of encryption under salinity, which is of great ecophysiological significance for plants growing under osmotic stresses¹⁰.

Stomatal frequency

Two strawberry cultivars, (Elsanta and Elsinore) were grown under 0, 10, 20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomatal density (173 vs. 234 stomata mm^{-2} in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. However, the other physiological and molecular mechanisms relatively may have a role in higher tolerance of Elsanta. Low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought.

MATERIAL AND METHODS

Leaf area

Leaf area of all green leaves from five tagged plant was measured by adopting Stickler's linear measurement method¹⁹, as given below: leaf area per plant was calculated and expressed in dm².

Leaf area $(dm^2) = L \times B \times 0.747$

L = length of leaf, B = Breadth of leaf

Stomatal index

Stomatal density (SD) is a function of both the number of stomata plus the size of the epidermal cells. Thus, SD is affected both by the initiation of stomata and the expansion of epidermal cells. This expansion is a function of many variables (e.g. light, temperature, water status, position of leaf on crown, and intra-leaf position), and can overprint the signal reflective of stomatal initiation. As it turns out, CO_2 plays a stronger role in stomatal initiation than in epidermal cell expansion¹⁵.

Stomatal index was calculated by using Salisbury¹⁷, method which normalizes for the effects of this expansion (i.e. density of epidermal cells).

Stomatal density

It is defined as: SI (%) = -

.

- X 100

Stomatal density + epidermal cell density

Where; stomata consist of the stomatal pore and two flanking guard cells.

Kadamanda and Natarajan Stomatal frequency (no. mm⁻²)

The stomatal frequency (Number of stomata per unit leaf area) was estimated by following leaf surface impression by using xylene thermocole solution. The paste was smeared on leaf surface of third leaf from top and after 2-3 min, the solidified layer was peeled out and mounted on a slide with coverslip and observed under '40X' magnification. The number of stomata were counted and expressed in terms of number of stomata per mm² leaf area.

RESULTS AND DISCUSSION Leaf Area (dm²)

It was seen from the data that the landraces differed significantly with respect to leaf area at two stages (30 and 90 DAS) during crop period (Tab 1a and 1b). It was also observed that leaf area increased up to 90 DAS irrespective of salt and concentration in all landraces periodically.

At 30 DAS, the landrace R.K.S.III had significantly higher leaf area (19.267), over rest of the landraces. The lowest leaf area at this stage was recorded in R.K.S.I (16.038) followed by R.K.S.II (16.342) and these genotypes were found to be on par with each other. At 90 DAS the same trend was maintained in R.K.S.III (30.583), but the lowest was recorded in R.K.S.II (22.106) and R.K.S.I (22.422) and were found to be on par with each other.

The leaf area affected significantly by the salt NaCl (14.249) followed by NaCl + Na₂CO₃ (15.342), and Na₂CO₃ (18.222), Na₂SO₄ + Na₂CO₃ (18.183) at 30 DAS. Least leaf area was recorded in NaCl (22.587) followed by NaCl + Na₂SO₄ (23.303), NaCl + Na₂CO₃ (23.372), Na₂SO₄ + Na₂CO₃ (23.378), while the maximum was recorded with Na₂CO₃ (25.628 at 90 DAS.

Interaction between landraces and salts was found to be significantly reduced the leaf area than control. At 30 DAS, R.K.S.III with Na_2SO_4 + Na_2CO_3 was recorded maximum leaf area (21.132) and it was on par with Na_2CO_3 (20.784) in the same landrace, lowest was observed in R.K.S.I with NaCl + Na_2CO_3 (13.478) fallowed by NaCl (13.720)

and were found to be on par with each other in the same landrace. At 90 DAS, the highest leaf area was recorded in R.K.S.III with NaCl + Na₂SO₄ + Na₂CO₃ (32.246) which was on par with Na₂SO₄ (32.084) in the same landrace, lowest was observed in R.K.S.II with NaCl + Na₂CO₃ (19.845), which was on par with NaCl + Na₂SO₄ (20.142) Na₂SO₄ + Na₂CO₃ (20.447) NaCl (20.721) in the same landrace and with Na₂SO₄ + Na₂CO₃ in R.K.S.I (20.416).

Interaction between landraces, salts and concentration reveals that high leaf area in R.K.S.III with Na₂CO₃ at 0.30% followed by $Na_2SO_4 + Na_2CO_3$ (23.54) at 0.15% in the same landrace, lowest was in R.K.S.II with NaCl at 0.45% (11.23) followed by R.K.S.I with $NaCl + Na_2CO_3$ at the same concentration (11.45) at 30 DAS. R.K.S.III with Na_2SO_4 at 0.15% (38.09) was the highest, it was on par with NaCl + Na_2SO_4 + Na_2CO_3 at same concentration in the same landrace, R.K.S.II $NaCl + Na_2SO_4$ (17.77) was the lowest and it was on par with $NaCl + Na_2SO_4 + Na_2CO_3$ (17.96) and NaCl (17.97) at 0.45% during 90 DAS. Salinity is one of the major abiotic stresses affecting plant productivity. Salinity decreases plant leaf area and finally decreases crop yield². Dolatabadian *et al.*⁵, showed that salinity stress significantly decreased plant height and leaf numbers. Rahimi Asghar et al.¹² demonstrated that leaf area ratio (LAR) and crop growth rate (CGR) decreases with increasing salinity. Hence, the results from the present study corroborated with earlier workers.

Stomatal index

Stomata play an important role on growth and development of plant. The data on stomatal density was significantly indicated effect of salinity (Tab 2a and 2b). In general, the landraces having higher reduction in leaf area recorded larger increase in stomatal density. The landrace R.K.S.I (40.080 and 59.363) had the highest stomatal index, landrace R.K.S.II (39.808 and 59.062) showed smaller increase in stomatal Index. However, the landrace R.K.S.III (39.247 and 57.499) had maintained the lowest of stomatal index at both 30 and 90 DAS.

Kadamanda and Natarajan Int. J. Pure App. Among the salts NaCl had highest negative affect (49.656 and 66.824) on stomatal index at both 30 and 90 DAS and it was on par with NaCl + Na₂CO₃ (42.887) at 30 DAS, Na₂SO₄ (59.186) at 90 DAS. Na₂CO₃ (37.111) had less effect and it was on par with Na₂SO₄ + Na₂CO₃ (38.249) at 30 DAS, the same trend followed at 90 DAS in case of Na₂CO₃ and it was on par with NaCl + Na₂SO₄ (58.092).

Interaction between landraces and salts reveals that R.K.S.I was significantly affected by NaCl (50.297 and 67.636) and it was on par with R.K.S.II (49.443 and 67.609), R.K.S.III was less affected (49.227 and 65.227) by the same salt at both 30 and 90 DAS.R.K.S.I landrace showed negative effect in ANOVA analysis on interaction between landraces, salts and their concentrations. It has recorded an index value of 56.24 at 0.45% while R.K.S. III recorded 54.23 followed by RKS II (54.98) at 30 DAS. R.K.S.III was least effected one with Na₂CO₃ at 0.15% (34.29), followed by R.K.S.I (34.79) after thirty days of sowing. At 90 DAS, R.K.S.II and R.K.S. I have significantly affected by NaCl at 0.45% (68.48 and 68.28 respectively). R.K.S.III with Na₂CO₃ at 0.15% had lowest affected position (53.59) followed by NaCl + Na₂CO₃ (53.66) at 90 DAS.The traits of increased stomatal density and decreased stomatal area may be critical for stomatal regulation under saltprone environments. High stomatal regulation depended largely on stomatal density, area, and degree of encryption under salinity, which

is of great ecophysiological significance for plants growing under osmotic stresses as explained for *Sporobolus ioclados*¹⁰.

Stomatal Frequency (no. mm⁻²) at 30 and 90 DAS

The data on stomatal frequency was significantly indicated effect of salinity (Tab 3).

Stomatal frequency was lowest in R.K.S.III (13.08 and 16.08), highest in R.K.S.II (15.02 and 18.04) and it was on par with R.K.S.I (14.12 and 17.06) both 30 and 90 DAS.

Salt NaCl had its significant effect (16.27 and 19.83) both 30 and 90 DAS, was on par with NaCl + Na₂SO₄ + Na₂CO₃ (16.27) at 30 DAS, least was by Na₂SO₄ + Na₂CO₃ (12.16) at 30 DAS, and NaCl + Na₂SO₄ + Na₂CO₃ (16.33) at 90 DAS.

Interaction between the landraces and salts was showed that stomatal frequency had highest in R.K.S.I with NaCl (16.83) and it was on par in Na₂SO₄ + Na₂CO₃ (16.50) in the same salt landrace, lowest with Na₂CO₃ (11.00) followed by Na₂SO₄ + Na₂CO₃ (12.50) in the same landrace at 30 DAS. At 90 DAS, highest in R.K.S.I with NaCl (19.83), was on par with R.K.S.II (19.50), lowest was in R.K.S.II with NaCl + Na₂SO₄ (12.50) fallowed by NaCl + Na₂SO₄ + Na₂CO₃ (12.66) in the same landrace. Interaction between landraces, salts and concentration was non significant. This corroborates with the earlier study by Orsini *et al.*

	Т		I	4	1	L ₂	1	L_3		
	30 DAS	90 DAS	30 DAS	90 DAS	30 DAS	90 DAS	30 DAS	90 DAS		
	M	ean	16.038	22.422	16.342	22.106	19.267	30.583		
Control	21.919	31.998	19.574	30.474	23.454	28.930	22.729	36.591		
NaCl	14.249	22.587	13.720	20.839	14.663	20.721	14.364	26.201		
Na ₂ SO ₄	17.211	24.805	16.753	21.142	16.181	21.190	18.698	32.084		
Na ₂ CO ₃	18.222	25.628	17.658	21.929	16.225	23.619	20.784	31.337		
$NaCl + Na_2SO_4$	16.112	23.303	14.397	21.616	14.963	20.142	18.976	28.152		
NaCl + Na ₂ CO ₃	15.342	23.372	13.478	21.493	14.030	19.845	18.518	28.778		
$Na_2SO_4 + Na_2CO_3$	18.183	23.378	16.912	20.416	16.505	20.447	21.132	29.272		
$NaCl + Na_2SO_4 + Na_2CO_3$	16.488	25.224	15.812	21.469	14.719	21.957	18.935	32.246		
SOV		SI	E m±			CD :	at 5%			
	30 1	DAS	90 I	DAS	30	DAS	90 DAS			
L	0.	13	0.12		0.	0.276		0.240		
Т	0.	0.22		19	0.	451	0.392			
С	0.	0.13		12	0.	276	0.240			
LxT	0.	39	0.	34	0.	782	0.679			

Table 3.1a Leaf area (dm²) of 30 DAS and 90 DAS month

SOV – Source of Variation, L – Landrace,

T - Treatment, C - Concentration

L x T - Interaction of Landrace and Treatment

L2 - Landrace R.K.S. II

L3 - Landrace R.K.S. III

L1 - Landrace R.K.S. I

Kadamanda and Natarajan Int. J. Pu

Int. J. Pure App. Biosci. **5 (6):** 158-165 (2017) **Table 3.1b Leaf Area (dm²) at 30 and 90 DAS (cont.)**

	Tuble Stip Leaf Area (and) at 50 and 50 Dris (cond)																	
Т	L_1							L_2					L ₃					
	30 DAS 90 DAS			30 DAS			90 DAS		30 DAS			90 DAS						
	C1	C2	C3	C1	C ₂	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C ₃
T ₀	19.57	19.57	19.57	30.47	30.47	30.47	23.45	23.45	23.45	28.93	28.93	28.93	22.72	22.72	22.72	36.59	36.59	36.59
T ₁	15.13	13.48	12.53	21.78	19.77	20.96	18.27	14.47	11.23	24.74	19.44	17.97	17.74	16.66	8.68	30.26	27.07	21.26
T ₂	17.87	15.15	17.22	23.48	21.02	18.91	18.74	15.94	13.85	21.80	22.54	19.21	21.71	18.21	16.17	38.09	32.15	26.01
T ₃	16.77	17.99	18.20	21.75	23.24	20.79	16.68	18.22	13.77	22.81	24.47	23.56	20.39	25.45	16.50	35.71	29.38	28.91
T ₄	15.69	15.18	12.30	24.55	22.31	17.98	16.55	15.53	12.79	21.31	21.33	17.77	22.98	20.40	13.53	34.16	28.44	21.84
T ₅	16.41	12.57	11.45	23.03	22.33	19.11	15.50	14.51	12.06	21.41	20.09	18.03	23.50	16.46	15.58	33.24	25.91	27.18
T ₆	15.85	18.65	16.22	20.64	18.09	22.50	20.64	14.11	14.75	25.00	18.37	17.96	23.54	18.44	21.41	32.16	24.64	30.99
T ₇	15.33	17.34	14.75	21.37	22.59	20.44	13.84	14.90	15.40	21.66	24.69	19.50	19.37	17.98	19.43	36.16	29.60	30.96
	SOV					SE 1	n±							CD a	at 5%			
	L x T x C 30 DAS				90 DAS			30 DAS			90 DAS							
				0.0	57			0.	58		1.354				1.175			

SOV – Source of Variation, L – Landrace, T – Treatment, C – Concentration

L x T x C – Interaction of Landraces, Treatments and Concentration

T ₀ - Control	C ₁ - 0.15%
T ₁ - NaCl	C ₂ - 0.30%
T $_2$ - Na $_2$ SO $_4$	C ₃ - 0.45%
T ₃ - Na ₂ CO ₃	L ₁ - Landrace R.K.S. I
T $_4$ - NaCl + Na $_2$ SO $_4$	L ₂ - Landrace R.K.S. II
T $_5$ - NaCl + Na ₂ CO ₃	L ₃ - Landrace R.K.S. III
T $_6$ - Na ₂ SO ₄ + Na ₂ CO ₃	$T_7 - NaCl + Na_2SO_4 + Na_2CO_3$

Table 3.2a Effect of Salinity on Stomatal Index at 30 and 90 DAS

	Т]	-1	L	-2	L_3		
	30 DAS	90 DAS							
	Ν	lean	40.080	59.363	39.808	59.062	39.247	57.499	
Control	32.291	52.624	34.197	55.197	31.788	51.788	30.888	50.888	
NaCl	49.656	66.824	50.297	67.636	49.443	67.609	49.227	65.227	
Na ₂ SO ₄	39.187	59.186	38.934	58.929	39.167	59.167	39.462	59.462	
Na ₂ CO ₃	37.111	56.769	37.207	57.230	37.454	57.471	36.672	55.605	
$NaCl + Na_2SO_4$	38.466	58.092	38.603	57.688	38.692	58.603	38.103	57.987	
$NaCl + Na_2CO_3$	42.887	58.202	42.691	59.351	43.337	60.503	42.634	54.750	
$Na_2SO_4 + Na_2CO_3$	38.249	58.268	38.644	58.642	38.412	58.389	37.691	57.775	
NaCl + Na ₂ SO ₄ + Na ₂ CO ₃	39.847	59.166	40.065	60.228	40.173	58.968	39.304	58.302	
SOV		SI	E m±			CD a	at 5%		
	30	DAS	90	DAS	30 I	DAS	90 DAS		
L	(.09	0.	08	0.198		0.185		
Т	(0.15		0.14		0.323		0.302	
LxT	(.27	0.25		0.5	560	0.522		

SOV – Source of Variation, L – Landrace, T – Treatment,

L₁ - Landrace R.K.S. I

L2 - Landrace R.K.S. II

L₃ - Landrace R.K.S. III

L x T – Interaction of Landrace and Treatment

Table 3.2b Effect of Salinity on Stomatal Index at 30 and 90 DAS (cont.)

Т	L ₁						L_2					L_3						
		30 DAS 90 DAS				30 DAS			90 DAS		30 DAS			90 DAS				
	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3	C ₁	C2	C3	C1	C2	C3
T ₀	34.69	33.19	34.69	55.19	55.19	55.19	31.78	31.78	31.78	51.78	51.78	51.78	30.88	30.88	30.88	50.88	50.88	50.88
T ₁	41.70	52.94	56.24	66.71	67.94	68.24	40.98	52.35	54.98	66.98	67.35	68.48	41.36	52.08	54.23	64.36	65.08	66.23
T ₂	37.53	38.10	41.16	57.52	58.10	61.16	37.93	38.29	41.27	57.93	58.29	61.27	38.00	38.51	41.87	58.00	58.51	61.87
T ₃	34.79	36.79	40.03	54.79	56.79	60.10	35.08	37.00	40.28	55.13	57.00	60.28	34.29	36.04	39.68	53.59	54.54	58.68
T_4	36.73	37.47	41.60	56.87	57.50	58.69	36.87	37.49	41.70	56.73	57.47	61.60	36.01	37.32	40.97	56.01	56.97	60.97
T ₅	38.09	43.79	46.17	58.09	59.77	60.17	39.11	43.98	46.91	59.11	60.48	61.91	38.36	43.64	45.88	53.66	54.69	55.88
T ₆	37.49	38.44	39.99	57.49	58.44	59.99	37.23	38.01	39.99	57.16	58.01	59.99	37.16	37.27	38.64	57.16	57.52	58.64
T_7	38.17	40.07	41.94	58.89	60.17	61.61	38.90	40.00	41.61	58.17	58.82	59.90	37.89	39.57	40.44	56.89	58.57	59.44
	SOV		SE m± CD at 5%															
	L x T x	С		30 I	DAS		90 DAS				30 DAS				90 DAS			
					-		0.44				N.S.			0.90				

SOV – Source of Variation, L – Landrace, T – Treatment, C – Concentration

,	, , , , , , , , , , , , , , , , , , , ,
L x T x C – Interaction of Landra	aces, Treatments and Concentration
T ₀ - Control	C ₁ - 0.15%
T 1 - NaCl	C ₂ - 0.30%
T ₂ - Na ₂ SO ₄	C ₃ - 0.45%
T ₃ - Na ₂ CO ₃	L ₁ - Landrace R.K.S. I
T ₄ - NaCl + Na ₂ SO ₄	L ₂ - Landrace R.K.S. II
T ₅ - NaCl + Na ₂ CO ₃	L ₃ - Landrace R.K.S. III
T $_6$ - Na ₂ SO ₄ + Na ₂ CO ₃	$T_7 - NaCl + Na_2SO_4 + Na_2CO_3$

Kadamanda and Natarajan	Int. J. Pure App. Biosci. 5 (6): 158-165 (2017)	ISSN: 2320
Tabl	e 3.3 Stomatal Frequency (no. mm ⁻²) at 30 and 90 DAS	

L – Landrace,

	Г		I	4	I	-2	L_3				
	30 DAS	90 DAS									
	Me	an	14.12	17.06	15.02	18.04	13.08	16.08			
Control	12.16	15.00	12.00	15.00	14.50	16.66	11.00	14.00			
NaCl	16.27	19.83	16.83	19.83	15.00	19.50	15.50	18.50			
Na ₂ SO ₄	14.50	17.33	14.50	17.33	14.66	18.50	13.50	16.50			
Na ₂ CO ₃	13.50	17.50	13.50	17.50	11.00	18.50	13.50	16.50			
NaCl + Na ₂ SO ₄	14.00	16.50	14.00	16.50	15.50	17.50	12.50	15.50			
NaCl + Na ₂ CO ₃	13.66	17.00	13.50	17.00	13.50	18.00	13.00	16.00			
$Na_2SO_4 + Na_2CO_3$	12.16	17.00	16.50	17.00	12.50	18.00	13.00	16.00			
$NaCl + Na_2SO_4 + Na_2CO_3$	16.27	16.33	15.50	16.33	13.00	17.66	12.66	15.66			
SOV		SI	E m±			CD a	at 5%				
	30 D	AS	90 1	90 DAS		30 DAS		DAS			
L	0.4	0.40		0.13		0.28		.26			
Т	0.2	2	0.21		0.46		0.44				
LxT	0.3	8	0.	35	0.	79	0.76				

T – Treatment.

SOV - Source of Variation,

L₁ - Landrace R.K.S. I

L2 - Landrace R.K.S. II

L₃ - Landrace R.K.S. III

L x T - Interaction of Landrace and Treatment

CONCLUSION

Salinity like drought remains as one of the world's most serious environmental problems. Effect of different concentrations of various salts (NaCl, Na₂SO₄, Na₂CO₃, NaCl+ Na₂SO₄, $NaCl+ Na_2CO_3$, $Na_2SO_4+ Na_2CO_3$, NaCl+Na₂SO₄+ Na₂CO₃) studied in pot culture on growth, some metabolites like chlorophyll, total carotenoids, reducing sugars, proline, total proteins in three landraces of roselle (Hibiscus sabdariffa L), one of the most important and popular medicinal and industrial plants at 30 and 90 days after sowing. Salinity stress effects on Leaf area, Stomatal index, Stomatal frequency, Completely randomized block design (CRD) was used for the experimental study.Leaf area, Stomatal index, Stomatal frequency, significantly differed among landraces, salts at three different concentrations besides interaction between landraces, salts and salinity levels. RKS I landrace found to be the most tolerant genotype among all the three landraces studied. However, RKS III was found to be tolerant to salinity stress conditions except at higher concentrations of NaCl (0.45%), where no seed set was observed. pH of the soil was significantly differed among landraces, salts with three concentrations besides interaction between landraces, salts and salinity levels. Among the salts used, NaCl, NaCl+ Na₂CO₃ $NaCl+ Na_2SO_4+ Na_2CO_3$ reduced the leaf area, Stomatal index. Stomatal frequency significantly.Based on the present results RKS

I landrace of Roselle (*Hibiscus sabdariffa* L.) was found more salt tolerant than the other two landraces (RKS III and RKS II).

REFERENCES

- 1. Abdel Latef, A.A., Shaddad, M.A.K., Ismail. A.M. and Alhmad. M.F.A., Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins, Int J Agric Biol. 11: 151-157 (2009).
- 2. Amirjani, M.R., Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice, Int J Bot, 7: 73-81(2011).
- 3. Ashwani Kumar, Satyawati Sharma and Saroj M., Effect of alkalinity on growth performance of Jatropha Curcas Inoculated With PGPR and AM Fungi. Journal of Phytology, 1(3): 177–184 (2009).
- 4. Ben H.S. and Lefi, E., Dynamics of growth and phytomass allocation in seedlings of Pistacia atlantica desf. versus Pistacia vera L. under salt stress. International Journal of Agronomy and Agricultural Research (IJAAR), 6 (1): 16-27 (2015).
- 5. Dolatabadian, A., Seyed Ali M.D., Modarres S. and Faezeh G., Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not *Sci Biol*, **3(1):** 41-45 (2011).

Copyright © Nov.-Dec., 2017; IJPAB

Kadamanda and Natarajan Int.

- 6. FAO Agricultural Drainage Water Management in Arid and Semi-Arid Areas (2002).
- Flowers, T.J. and Yeo, A.R., Breeding for salinity resistance in crop plants: where next? *Aust J Plant Physiol*, **22**: 875-884 (1995).
- Hakim, M.A., Juraimi, A.S., Begum, M., Hanafi, M.M., Ismail, M.R., Selamat, A., Effect of salt stress on germination and early seedling growth of rice (*Oryza sativa* L.). *African Journal of Biotechnology*, 9(13): 1911-1918 (2010).
- Kaymakanova, M., Effect of salinity on germination and seed physiology in Bean (phaseolus vulgaris l.). Biotechnol & Biotechnol Eq,9: 326-329 (2009).
- Nargis, N., Hameed, M., Ashraf, M., Alqurainy F. and Arshad, M., Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. *Photosynthetica*, 48 (3): 446-456 (2010).
- Prenesti, E., Berto, S., Daniele, P.G. and Toso, S., Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers, *Food Chemistry*, **100** (2): 433–438 (2007).
- Rahimi, A., Biglarifard, A., Mirdehghan, H. and Borghei S.F., Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa. *Journal of Stress Physiology & Biochemistry*, 4: 145-156 (2011).
- Rao, P.S., Mishra, B., Gupta S.R. and Rathore, A., Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. *Plant Breeding*, **127**: 256–261 (2008).
- Rui, M., Almeida, M. and Ricardo, P.S., Soil Salinity: Effect on Vegetable Crop Growth, *Horticulturae*, **3 (30):** 1-13 (2017).
- Royer and D.L., Stomatal density and stomatal index as indicators of paleoatmospheric CO₂ concentration. *Review of Palaeobotany and Palynology*, 114: 1-28 (2001).
- 16. Saed J. and Owais, Morphological and Physiological Responses of Six Grape

Genotypes to NaCl Salt Stress, *Pakistan Journal of Biological Sciences*, **18**: 240-246 (2015).

- 17. Salisbury and E.J., On the causes and ecological significance of stomatal frequency, with special reference to the woodlandflora. *Philos Trans R Soc London*, **216:** 1-65 (1927).
- Seyed, M.Z., Majid Nabipour, Mehrdad Azizi, Hadi Gheisary, Mansour Jalali and Zohreh A., (Effect of Kinds of Salt and its Different Levels on Seed Germination and Growth of Basil Plant. World Applied Sciences Journal, 15 (7): 1039-1045 (2011).
- 19. Stickler, F. and Pauli A.W., Influence of date of planting on yield and yield components of grain sorghum. *Agronomy Journal*, **53**: 22-23 (1961).
- Tee, P.L., Yusof, S. and Mohamed, S., Antioxidative properties of Roselle (Hibiscus sabdariffa)L. in linoleic acid model system. *Nutrition & Food Science*, **32** (1): 17–20 (2002).
- Tsai, P.J. and Huang, H.P., Effect of polymerization on the antioxidant capacity of anthocyanins in Roselle. *Food Research International*, **37** (4): 313–318 (2004).
- 22. Tseng, T.H., Kao, E.S., Chu, C.Y., Chou, F.P., Lin Wu, H.W. and Wang, C.J., Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. *Food and Chemical Toxicology*, **35**: 1159–1164 (1997).
- 23. Yang, C.W., Chong, J.N., Kim, C.M., Li, C.Y., Shi, D.C. and Wang, D.L., Osmotic adjustment and ion balance traits of an alkali resistant halophyte *Kochia sieversiana* during adaptation to salt and alkali conditions. *Plant Soil*, **294:** 263-276 (2007).
- Yang, C.W., Wang, P., Li, C.Y., Shi, D.C. and Wang, D.L., Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. *Photosynthetica*, 46: 107-114 (2008).